A new way to think about Ostrowski-like type inequalities

Vu Nhat Huy*, Quôc-Anh Ngô

*Department of Mathematics, College of Science, Vietnam National University, Hanoi, Vietnam

Department of Mathematics, National University of Singapore, Block S17 (SOC1), 10 Lower Kent Ridge Road, Singapore 119076, Singapore

ARTICLE INFO

Article history:
Received 5 May 2009
Received in revised form 17 February 2010
Accepted 17 February 2010

Keywords:
Inequality
Error
Integral
Taylor
Ostrowski
Newestimations
Numericalintegration

ABSTRACT

In this present paper, by considering some known inequalities of Ostrowski-like type, we propose a new way to treat a class of Ostrowski-like type inequalities involving \(n \) points and \(m \)-th derivative. To be precise, the following inequality

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - \frac{b-a}{n} \sum_{i=1}^n f(a + x_i (b-a)) \right| \leq \frac{2m + 5}{4} \frac{(b-a)^{m+1}}{(m+1)!} (S - s)
\]

(\(\star \))

holds, where \(S := \sup_{t \in [a,b]} f^{(m)}(t) \), \(s := \inf_{t \in [a,b]} f^{(m)}(t) \) and for suitable \(x_1, x_2, \ldots, x_n \). It is worth noticing that \(n, m \) are arbitrary numbers. This means that the estimate in (\(\star \)) is more accurate when \(m \) is large enough. Our approach is also elementary.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a number of authors have considered error inequalities for some known and some new quadrature formulas. Sometimes they have considered generalizations of these formulas, see [1–5] and their references therein where the midpoint and trapezoidal quadrature rules are considered.

In [6, Corollary 3] the following Simpson–Grüss type inequalities have been proved. If \(f : [a, b] \to \mathbb{R} \) is such that \(f^{(n-1)} \) is an absolutely continuous function and

\[
y_n \leq f^{(n)}(t) \leq \Gamma_n, \quad (\text{a.e.) on } [a, b]
\]

for some real constants \(y_n \) and \(\Gamma_n \), then for \(n = 1, 2, 3 \), we have

\[
\left| \int_a^b f(t) \, dt - \frac{b-a}{6} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right) \right| \leq C_n \left(\Gamma_n - y_n \right) (b-a)^{n+1},
\]

where

\[
C_1 = \frac{5}{72}, \quad C_2 = \frac{1}{162}, \quad C_3 = \frac{1}{1152}.
\]
In [2, Theorem 3], the following results obtained: Let \(I \subset \mathbb{R} \) be an open interval such that \([a, b] \subset I \) and let \(f : I \to \mathbb{R} \) be a twice differentiable function such that \(f'' \) is bounded and integrable. Then we have

\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{2} \left(f\left(\frac{a+b}{2} - (2 - \sqrt{3}) (b-a) \right) + f\left(\frac{a+b}{2} + (2 - \sqrt{3}) (b-a) \right) \right) \right| \\
\leq \frac{7 - 4\sqrt{3}}{8} \| f'' \|_\infty (b-a)^3.
\]

(2)

In the above mentioned results, constants \(C_\epsilon \) in (1) and \(\frac{7 - 4\sqrt{3}}{8} \) in (2) are sharp in the sense that these cannot be replaced by smaller ones. We may think the estimate in (1) involves the following six points \(x_i, i = 1, \ldots, 6 \) which will be called knots in the sequel

\[
a + \frac{0}{x_1} (b-a) < a + \frac{1}{x_2} (b-a) = \cdots = a + \frac{1}{x_5} (b-a) < a + \frac{1}{x_6} (b-a).
\]

While in (2), we have two knots \(x_1 < x_2 \) as following

\[
a + \frac{1}{x_1} - \left(\frac{1}{2} - (2 - \sqrt{3}) \right) (b-a) < a + \frac{1}{x_2} \left(\frac{1}{2} + (2 - \sqrt{3}) \right) (b-a).
\]

On the other hand, as can be seen in both (1) and (2) the number of knots in the left hand side reflects the exponent of \(b - a \) in the right hand side. This leads us to strengthen (1)-(2) by enlarging the number of knots (six knots in (1) and two knots in (2)).

Before stating our main result, let us introduce the following notation

\[
l(f) = \int_a^b f(x) \, dx.
\]

Let \(1 \leq m, n < \infty \). For each \(i = 1, \ldots, n \), we assume \(0 < x_i < 1 \) such that

\[
\begin{align*}
 x_1 + x_2 + \cdots + x_n &= \frac{n}{2}, \\
 \cdots &= \cdots, \\
 x_1^m + x_2^m + \cdots + x_n^m &= \frac{n}{m}, \\
 \cdots &= \cdots, \\
 x_1^m + x_2^m + \cdots + x_n^m &= \frac{n}{m+1}.
\end{align*}
\]

Put

\[
Q(f, n, m, x_1, \ldots, x_n) = \frac{b-a}{n} \sum_{i=1}^{n} (a + x_i (b-a)).
\]

Remark 1. With the above notations, (1) reads as follows

\[
\left| l(f) - Q\left(f, 6, m, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \right| \leq C_m (\gamma_m - \gamma_m) (b-a)^{m+1}, \quad m = 1, 3,
\]

while (2) reads as follows

\[
\left| l(f) - Q\left(f, 2, 2, 1 \frac{1}{2} - \left(\frac{1}{2} - (2 - \sqrt{3}) \right), \frac{1}{2} + (2 - \sqrt{3}) \right) \right| \leq \frac{7 - 4\sqrt{3}}{8} \| f'' \|_\infty (b-a)^3.
\]

(4)

We are now in a position to state our main result.

Theorem 2. Let \(I \subset \mathbb{R} \) be an open interval such that \([a, b] \subset I \) and let \(f : I \to \mathbb{R} \) be a \(m \)-th differentiable function. Then we have

\[
|l(f) - Q(f, n, m, x_1, \ldots, x_n)| \leq \frac{2m + 5}{4} \frac{(b-a)^{m+1}}{(m+1)!} (S - s)
\]

where \(S := \sup_{a \leq x \leq b} f^{(m)}(x) \) and \(s := \inf_{a \leq x \leq b} f^{(m)}(x) \).
Remark 3. It is worth noticing that the right-hand side of (5) does not involve \(x_i, i = 1, n\) and that \(m\) can be chosen arbitrarily. This means that our inequality (5) is better in some sense, especially when \(b - a \ll 1\).

This work can be considered as a continued and complementary part to a recent paper [7]. More specifically, [7, Theorem 4] provides a similar estimate as (5). However, in contrast to the result presented here our estimate in (5) depends only on the \(L^p\)-norm of \(f^{(m)}(x)\). There is one thing we should mention here; both Theorem 2 presented here and Theorem 4 in [7] are not optimal. This is because of the restriction of the technique that we use. It is better if we leave these to be solved by the interested reader.

2. Proofs

Before proving our main theorem, we need an essential lemma below. It is well-known in the literature as Taylor's formula or Taylor's Theorem with the integral remainder.

Lemma 4 (See [8]). Let \(f : [a, b] \rightarrow \mathbb{R}\) and let \(r\) be a positive integer. If \(f\) is such that \(f^{(r-1)}\) is absolutely continuous on \([a, b]\), \(x_0 \in (a, b)\) then for all \(x \in (a, b)\) we have

\[
f(x) = T_{r-1}(f, x_0, x) + R_{r-1}(f, x_0, x)
\]

where \(T_{r-1}(f, x_0, \cdot)\) is Taylor's polynomial of degree \(r - 1\), that is,

\[
T_{r-1}(f, x_0, x) = \sum_{k=0}^{r-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k
\]

and the remainder can be given by

\[
R_{r-1}(f, x_0, x) = \int_{x_0}^{x} \frac{(x - t)^{r-1} f^{(r)}(t)}{(r-1)!} \, dt.
\]

By a simple calculation, the remainder in (6) can be rewritten as

\[
R_{r-1}(f, x_0, x) = \int_{0}^{x-x_0} \frac{(x-x_0-t)^{r-1} f^{(r)}(x_0+t)}{(r-1)!} \, dt
\]

which helps us to deduce a similar representation of \(f\) as follows

\[
f(x + u) = \sum_{k=0}^{r-1} \frac{f^{(k)}(x)}{k!} + \int_{0}^{u} \frac{(u-t)^{r-1}}{(r-1)!} f^{(r)}(x + t) \, dt.
\]

Before proving Theorem 2, we see that

\[
\frac{1}{b-a} \left(\int_{a}^{b} \frac{(b-x)^m}{m!} \, dx \right) \left(\int_{a}^{b} f^{(m)}(x) \, dx \right) = \frac{(b-a)^m}{(m+1)!} (f^{(m-1)}(b) - f^{(m-1)}(a)).
\]

Since

\[
(b-a) s \leq f^{(m-1)}(b) - f^{(m-1)}(a) \leq (b-a) S
\]

then

\[
\frac{(b-a)^{m+1}}{(m+1)!} s \leq \frac{1}{b-a} \left(\int_{a}^{b} \frac{(b-x)^m}{m!} \, dx \right) \left(\int_{a}^{b} f^{(m)}(x) \, dx \right) \leq \frac{(b-a)^{m+1}}{(m+1)!} S.
\]

Besides,

\[
\frac{1}{n} \sum_{i=1}^{n} \left[\left(\int_{a}^{b} \frac{x^m(b-x)^{m-1}}{(m-1)!} \, dx \right) \left(\int_{a}^{b} f^{(m)}((1-x_i)a + x_i) \, dx \right) \right]
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \left[\frac{x^m(b-a)^{m}}{m!} \left(\int_{a}^{b} f^{(m)}((1-x_i)a + x_i) \, dx \right) \right].
\]

Clearly,

\[
(b-a) s \leq \int_{a}^{b} f^{(m)}((1-x_i)a + x_i) \, dx \leq (b-a) S
\]

which implies that

\[
\frac{(b-a)^{m+1}}{(m+1)!} s \leq \frac{1}{n} \sum_{i=1}^{n} \left(\int_{a}^{b} \frac{x^m(b-x)^{m-1}}{(m-1)!} \, dx \right) \left(\int_{a}^{b} f^{(m)}((1-x_i)a + x_i) \, dx \right) \leq \frac{(b-a)^{m+1}}{(m+1)!} S.
\]
Lemma 5 (Grüss Inequality, See [9]). Let \(f \) and \(g \) be two functions defined and integrable over \([a, b]\). Then we have

\[
\left| \frac{1}{b-a} \int_a^b f(x) g(x) \, dx - \frac{1}{(b-a)^2} \left(\int_a^b f(x) \, dx \right) \left(\int_a^b g(x) \, dx \right) \right| \leq \frac{1}{4} (S_1 - s_1) (S_2 - s_2)
\]

where \(s_1 \leq f(x) \leq S_1 \) and \(s_2 \leq g(x) \leq S_2 \) for all \(x \in [a, b] \).

Proof of Theorem 2. Denote

\[F(x) = \int_a^x f(t) \, dt. \]

By the Fundamental Theorem of Calculus

\[I(f) = F(b) - F(a) . \]

Applying Lemma 4 to \(F(x) \) with \(x = a \) and \(u = b - a \), we get

\[F(b) = F(a) + \sum_{k=1}^{m} \frac{(b-a)^k}{k!} F^{(k)}(a) + \int_a^b \frac{(b-t)^m}{m!} F^{(m+1)}(t) \, dt \]

which yields

\[I(f) = \sum_{k=1}^{m} \frac{(b-a)^k}{k!} F^{(k)}(a) + \int_a^b \frac{(b-t)^m}{m!} F^{(m+1)}(t) \, dt. \]

Equivalently,

\[I(f) = \sum_{k=0}^{m-1} \frac{(b-a)^{k+1}}{(k+1)!} F^{(k)}(a) + \int_a^b \frac{(b-t)^m}{m!} F^{(m)}(t) \, dt. \]

(8)

For each \(1 \leq i \leq n \), applying Lemma 4 to \(f(x) \) with \(x = a \) and \(u = x_i(b-a) \), we get

\[f(a + x_i(b-a)) = \sum_{k=0}^{m-1} \frac{x_i^k (b-a)^k}{k!} F^{(k)}(a) + \int_0^{x_i(b-a)} \frac{x_i (b-a) - t^{m-1}}{(m-1)!} F^{(m)}(a + t) \, dt \]

\[= \sum_{k=0}^{m-1} \frac{x_i^k (b-a)^k}{k!} F^{(k)}(a) + \int_0^{b-a} x_i^m (b-a - u)^{m-1} (m-1)! f^{(m)}(a + xu) \, du \]

\[= \sum_{k=0}^{m-1} \frac{x_i^k (b-a)^k}{k!} F^{(k)}(a) + \int_a^b x_i^m (b-u)^{m-1} (m-1)! f^{(m)}(a(1 - x_i) + xu) \, du. \]

(9)

By applying (9) to \(i = 1, n \) and then summing up, we deduce that

\[\sum_{i=1}^{n} f(a + x_i(b-a)) = \sum_{i=1}^{n} \sum_{k=0}^{m-1} \frac{x_i^k (b-a)^k}{k!} F^{(k)}(a) + \int_a^b \frac{x_i^m (b-u)^{m-1}}{(m-1)!} f^{(m)}(a(1-x_i) + xu) \, du \]

\[= \sum_{k=0}^{m-1} \frac{1}{k!} F^{(k)}(a) + \sum_{i=1}^{n} \int_a^b \frac{x_i^m (b-u)^{m-1}}{(m-1)!} f^{(m)}(a(1-x_i) + xu) \, du \]

\[= \sum_{k=0}^{m-1} \frac{n (b-a)^{k+1}}{(k+1)!} F^{(k)}(a) + \sum_{i=1}^{n} \int_a^b \frac{x_i^m (b-u)^{m-1}}{(m-1)!} f^{(m)}(a(1-x_i) + xu) \, du. \]

(10)

Thus,

\[Q(f, n, m, x_1, \ldots, x_n) = \sum_{k=0}^{m-1} \frac{(b-a)^{k+1}}{(k+1)!} F^{(k)}(a) + \frac{b-a}{n} \sum_{i=1}^{n} \int_a^b \frac{x_i^m (b-u)^{m-1}}{(m-1)!} f^{(m)}(a(1-x_i) + xu) \, du. \]

(11)

Therefore, by combining (8) and (11), we get

\[I(f) - Q(f, n, m, x_1, \ldots, x_n) = \int_a^b \frac{(b-x)^m}{m!} f^{(m)}(x) \, dx - \frac{b-a}{n} \sum_{i=1}^{n} \int_a^b \frac{x_i^m (b-x)^{m-1}}{(m-1)!} f^{(m)}((1-x_i)a + x_i) \, dx \]
and we know that

Then it follows from using the Grüss inequality that

and

We know that

and

Therefore,

Thus,

where

and

and

where

and

where

and

where
where

\[S := \sup_{a \leq x \leq b} f^{(m)}(x) \quad \text{and} \quad s := \inf_{a \leq x \leq b} f^{(m)}(x) \]

which completes our proof. \(\square \)

3. Examples

In this section, by applying our main theorem, we will obtain some new inequalities which cannot be easy obtained by [2,3]. Actually, our result covers several known results in the numerical integration.

Example 6. Assume \(n = 6, m = 1, 2, \) or 3. Clearly \(x_1 = 0, x_2 = x_3 = x_4 = x_5 = \frac{1}{2}, \) and \(x_6 = 1 \) satisfy the following linear system

\[
\begin{align*}
\begin{cases}
\sum_{i=1}^6 x_i &= 6, \\
\sum_{i=1}^{j'} x_i &= 6, & \text{for } j' = 1, 2, \ldots, j,
\sum_{i=1}^m x_i &= 6, \quad \text{for } m = 1, 2, 3,
\end{cases}
\end{align*}
\]

Therefore, we obtain the following inequalities

\[
\left| \int_a^b f(t) \, dt - \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2} \right) + f(b) \right) \right| \leq C_m (S_m - s_m) (b-a)^{m+1} \quad (12)
\]

where \(S_m = \sup_{a \leq x \leq b} f^{(m)}(x) \) and \(s_m = \inf_{a \leq x \leq b} f^{(m)}(x) \) and

\[
C_1 = \frac{7}{8}, \quad C_2 = \frac{9}{24}, \quad C_3 = \frac{11}{96}.
\]

Clearly, the left hand side of (12) is similar to the Simpson rule.

Example 7. Assume \(n = 3, m = 3. \) By solving the following linear system

\[
\begin{align*}
\begin{cases}
\sum_{i=1}^3 x_i &= 3, \\
\sum_{i=1}^2 x_i &= \frac{3}{2}, \\
\sum_{i=1}^3 x_i &= \frac{3}{3}, \\
\sum_{i=1}^3 x_i &= \frac{3}{4},
\end{cases}
\end{align*}
\]

we obtain \(\{x_1, x_2, x_3\} \) is a permutation of

\[
\left\{ \frac{1}{2}, 1 - \frac{1}{2} \left(1 \pm \frac{\sqrt{2}}{2} \right), \frac{1}{2} \left(1 \pm \frac{\sqrt{2}}{2} \right) \right\}.
\]

Therefore, we obtain the following inequalities

\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{3} \left(f(a) + 4f\left(\frac{1}{2} \left(1 \pm \frac{\sqrt{2}}{2} \right) \right)(b-a) \right) \right| \leq \frac{11(b-a)^4}{96} (S-s) \quad (13)
\]

where \(S = \sup_{a \leq x \leq b} f^{(m)}(x) \) and \(s = \inf_{a \leq x \leq b} f^{(m)}(x). \)

Example 8. If \(n = 2, m = 2, \) then by solving the following system

\[
\begin{align*}
\begin{cases}
x_1 + x_2 &= \frac{2}{2}, \\
x_1^2 + x_2^2 &= \frac{2}{3},
\end{cases}
\end{align*}
\]
we obtain
\[(x_1, x_2) = \left(\frac{1}{2} \pm \frac{\sqrt{3}}{6}, \frac{1}{2} \mp \frac{\sqrt{3}}{6} \right).\]

We then obtain a similar 2-point Gaussian quadrature rule
\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{2} \left(f \left(a + \frac{1}{2} - \frac{\sqrt{3}}{6} \right) (b-a) \right) + f \left(a + \frac{1}{2} + \frac{\sqrt{3}}{6} \right) (b-a) \right| \leq \frac{9(b-a)^3}{24(S-s)} \tag{14}
\]
where \(S = \sup_{a \leq x \leq b} f''(x) \) and \(s = \inf_{a \leq x \leq b} f''(x) \).

Remark 9. Note that using (13) provides a better result than using (14) (or the 2-point Gaussian quadrature rule). For example, let us consider the following function \(f(x) = xe^{i\pi x} \). Then
\[
\int_0^1 f(x) \, dx \approx 0.9291567730.
\]
If we use (13), we then have
\[
\int_0^1 f(x) \, dx \approx 0.9301849429.
\]
If we use (14), we then have
\[
\int_0^1 f(x) \, dx \approx 0.9319357678.
\]

Example 10. If \(m = 2 \) and \(n = 3 \), then by solving the following system
\[
\begin{align*}
 x_1 + x_2 + x_3 & = \frac{3}{2}, \\
x_1^2 + x_2^2 + x_3^2 & = \frac{3}{3}, \\
\end{align*}
\]
we obtain \(\{x_1, x_2, x_3\} \) is a permutation of \(\{t, \frac{3}{2} - t - k, k\} \), where \(k \) is a solution of the following algebraic equation
\[
8x^2 + (8t - 12)x + (8t^2 - 12t + 5) = 0
\]
with
\[
t \in \left[\frac{1}{2} - \frac{\sqrt{6}}{6}, \frac{1}{2} + \frac{\sqrt{6}}{6} \right].
\]
We then obtain
\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{3} \left(f \left(a + t (b-a) \right) + f \left(a + \frac{3}{2} - t - k \right) (b-a) \right) + f \left(a + k (b-a) \right) \right| \leq \frac{9(b-a)^3}{24(S-s)} \tag{14}
\]
where \(S = \sup_{a \leq x \leq b} f''(x) \) and \(s = \inf_{a \leq x \leq b} f''(x) \).

Acknowledgements

The authors wish to express their gratitude to the anonymous referees for a number of valuable comments and suggestions.

References

[9] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z. 39 (1) (1935) 215–226.