SHORTLISTED PROBLEMS
for the 36" IMO
CANADA, 1995

1 INTRODUCTION

The Problem Selection Committee of the 36 International Mathematical Olympiad
presents 28 problems for consideration by the Jury. They are classified under Alge-
bra, Geometry, Number Theory & Combinatorics and Sequences. Within each group,
they are arranged in ascending order of estimated difficulty.

Al Russia Gl Bulgaria N1 Romania S1 Ukraine
A2 Sweden G2 Germany N2 Russia S2 Poland
A3 Ukraine G3 Turkey N3 Czech Republic S3 Poland
A4 United States G4 Ukraine N4 Bulgaria S4 New Zealand
A5 Ukraine G5 New Zealand NS5 Ireland S5 Finland
A6 Japan G6 United States N6 Poland S6 India
G7 Latvia N7 Belarus
G8 Columbia N8 Germany

The following countries also contributed problems: Australia, Cyprus, Estonia,
France, Great Britain, Hong Kong, Iran, Kazakhstan, Luxembourg, Macedonia, Mon-
golia, The Netherlands, Norway, South Korea, Spain, Taiwan, Thailand and Vietnam.



2 PROBLEMS

Algebra
1. Let a, b and ¢ be positive real numbers such that abec = 1. Prove that

1 n 1 n 1 > 3
a3(b+¢c) b¥a+c) ca+b) T 2°

2. Let a and b be non-negative integers such that ab > ¢?, where c is an integer.

Prove that there is a number n and integers x¢, 22, ..., Zn, Y1, Y2, - .-, Yn SUch
that - - -
me = a, ny = b, and Zmiy,- = ¢
i—=1 =1 =1
3. Let n be aninteger, n > 3. Let a4, as,... ,a, be real numbers, where 2 < a; <
3fori=1,2,...,n. lf s=ay+as+---+ a,, prove that
a? 4+ a2 — a? a2+ a%—a? a® 4+ a? — a?
1 2 3 2 3 4 4 ... n 1 2 < 25— 2n.
a; +az —ag az + a3 — ay a, +a; — ay

4. Let a, b and ¢ be given positive real numbers. Determine all positive real num-
bers x,y and z such that

r+y+z=a+b+c

and
4xyz — (a*x + b*y + c*z) = abe.

5. Let R be the set of real numbers. Does there exist a function f : R — R which
simultaneously satisfies the following three conditions?

(a) There is a positive number M such that — M < f(x) < M for all «.
(b) The value of f(1) is 1.

(c) If  # 0, then ,
fla+ ) = s@+|7(3)] -

6. Let n be an integer, n > 3. Let x4, x2,... , x, be real numbers such that z; <
x;y; for1 < i < mn — 1. Prove that

w Zmimj > (z_:(’n, — Z):L‘Z> (Z(] — l)ilfj) .

Geometry



. Let A, B, C and D be four distinct points on a line, in that order. The circles
with diameters AC and B.D intersect at the points X and Y. The line XY meets
BC at the point Z. Let P be a point on the line XY different from Z. The line
CP intersects the circle with diameter AC at the points C and M, and the line
BP intersects the circle with diameter BD at the points B and IN. Prove that
the lines AM, DN and XY are concurrent.

. Let A, B and C be noncollinear points. Prove that there is a unique point
X in the plane of ABC such that XA? + XB?2 + AB? = XB? + XC?* +
BC? = XC? + XA% + CA2

. The incircle of ABC touches BC,C A and AB at D, E and F respectively. X is
a point inside ABC such that the incircle of X BC touches BC at D also, and
touches CX and X B at Y and Z, respectively. Prove that EFZY is a cyclic
quadrilateral.

. An acute triangle ABC is given. Points A; and A, are taken on the side BC
(with A, between A; and C), B; and B on the side AC (with B, between B,
and A) and C; and C, on the side AB (with C, between C; and B) so that

éAAlAz == éAAzAl == éBBle

- éBBzBI - 400102 - éCCzCl.

The lines AA,, BB, and CC; bound a triangle, and the lines AA,, BB, and
CC-, bound a second triangle. Prove that all six vertices of these two triangles
lie on a single circle.

. Let ABCDEF be a convex hexagon with AB = BC = CD,DE = EF = F A,
and /BCD = /ZEFA = 60°. Let G and H be two points in the interior of the
hexagon such that ZAGB = /DHE = 120°. Prove that AG + GB + GH +
DH + HE > CF.

. Let A;A;A3A4 be a tetrahedron, G its centroid, and A}, A}, A} and A/ the
points where the circumsphere of A, A; A3 A, intersects GA,, GA;, GA; and
G A, respectively. Prove that

GA;-GA,-GA;-GA, < GA| - GA,-GA, .- GA)

and
1 , 1t .1 0+ .t 1 1 1
GA, GA, GA, GA, ~ GA, GA, GA; GA,

. O is a point inside a convex quadrilateral ABCD of area S. K, L, M and N are
interior points of the sides AB, BC,CD and DA respectively. If OK BL and
OMDN are parallelograms, prove that v/S > /57 + /52, where S; and S,
are the areas of ON AK and OLC M respectively.



. Let ABC be a triangle. A circle passing through B and C intersects the sides
AB and AC again at C' and B’, respectively. Prove that BB',CC’ and HH'
are concurrent, where H and H' are the orthocentres of triangles ABC and
AB’'C’ respectively.

Number Theory & Combinatorics

. Let k be a positive integer. Prove that there are infinitely many perfect squares
of the form n2* — 7, where = is a positive integer.

. Let Z denote the set of all integers. Prove that, for any integers A and B, one
can find an integer C for which M; = {* + Az + B : « € Z} and M, =
{22? + 22 + C : € Z} do not intersect.

. Determine all integers n > 3 such that there exist n points A, A,,..., A, inthe
plane, and real numbers r, rs, ... , r, satisfying the following two conditions:
(a) no three of the points A, As,... , A, lie on a line;

(b) for each triple ¢,j, k(1 < ¢ < j < k < n), the triangle A;A;A, has area
equal to r; + r; + 7.

. Find all positive integers x and y such that = + y2 + 23 = zyz, where z is the
greatest common divisor of  and y.

. At a meeting of 12k people, each person exchanges greetings with exactly 3k + 6
others. For any two people, the number who exchange greetings with both is
the same. How many people are at the meeting?

. Let p be an odd prime number. Find the number of subsets A of {1,2,...,2p}
such that

(a) A has exactly p elements, and
(b) the sum of all the elements in A is divisible by p.

. Does there exist an integer n > 1 which satisfies the following condition?

The set of positive integers can be partitioned into n non-empty subsets, such
that an arbitrary sum of n — 1 integers, one taken from each of any n — 1 of the
subsets, lies in the remaining subset.

. Let p be an odd prime. Determine positive integers  and y for which z < y
and /2p — /= — ,/y is non-negative and as small as possible.

Sequences

1. Does there exist a sequence F(1), F(2), F(3), ... of non-negative integers
which simultaneously satisfies the following three conditions?

(a) Each of the integers 0,1, 2,... occurs in the sequence.



(b) Each positive integer occurs in the sequence infinitely often.

(c) For any n > 2,
F(F(n'®)) = F(F(n)) + F(F(361)).

. Find the maximum value of x4 for which there exists a sequence of positive real
numbers xq, 21,... , T1995 Satisfying the two conditions:

(a) &0 = 19953
(b) z;_1 + j—_l = 2x; + mi foreachi =1,2,...,1995.

. For an integer # > 1, let p(x) be the least prime that does not divide =, and
define g(«) to be the product of all primes less than p(z). In particular, p(1) =
2. For z having p(x) = 2, define g(x) = 1. Consider the sequence z¢, z,, z2, ...
defined by ¢ = 1 and

o ZaP(@a)
n+1 — — 7 <
q(zn)
for n > 0. Find all n such that =,, = 1995.
. Suppose that x=;, x5, x3,... are positive real numbers for which
n—1
j=0
forn =1,2,3,.... Prove that for all n,
2 — <z, <2——
2n—1 - on

. For positive integers n, the numbers f(n) are defined inductively as follows:
f(1) = 1, and for every positive integer n, f(n + 1) is the greatest integer m
such that there is an arithmetic progression of positive integersa; < a; < +-- <
a.,, = n and

flar) = f(as) = -+ = f(am).

Prove that there are positive integers a and b such that f(an 4+ b) = n + 2 for
every positive integer n.

. Let N denote the set of all positive integers. Prove that there exists a unique
function f : N — N satisfying

fm+ f(n)) =n+ f(m + 95)

19
for all m and n in N. What is the value of >  f(k)?

k=1



3 SOLUTIONS

3.1 ALGEBRA

1. Let a, b and ¢ be positive real numbers such that abec = 1. Prove that

1 n 1 n 1 > 3
as(b+¢c) b¥a+c) c3a+b) T 2°

Solution
Let
. 1 n 1 n 1
ad(b+c) bda+c) c3a+b)
and define
1 1 1
r=—y=—yz=—and T=xz+y+ z.
a b c

The positive real numbers x, y, and z satisfy xyz = 1. Then

1 B 3
as(b+c) §—|—§
_ x2yz 2iyz
oyt z  y+=z
% T?P—(T*—x?)
T —z T —x
T2
= —T —=x
T —x

This and the corresponding terms in ¢ and z yield

S—T2< R S )—4T
- T—a2 T—-—y T-—=z )

By the Arithmetic-Harmonic-Mean Inequality

9 9T ct+y+z
— 4T = 47T = ———,
(T—2)+ (T —y)+ (T — =) 2 2

S>T2.

By the Arithmetic-Geometric-Mean Inequality
3

3
S > —Yryz = —.
- 2 2
Equality holds if and only if x = y = z = 1, which is equivalenttoa = b =¢ =
1.



Alternative Solution
Let 2,4,z and S be as in the first solution.

£L‘2 y2 22

= + + :
y+ z z+ x r+y

S

By Cauchy’s Inequality,
[(y+2)+(z+z)+(x+y)]S > (z+y+2)
or S > =¥tz Tt follows from the Arithmetic-Geometric-Mean Inequality that

z+y+2z 3 3 3
S>— . —> ¥ - = -
- 3 2 Yz 2 2
Equality holds if and only if x = y = z = 1, which is equivalenttoa = b =¢ =
1.

Remark: This is Problem 2 of the 36th IMO on July 19, 1995. The first solution is
due to the proposer, Nazar Agakhanov, the leader of the team from Russia. The
second solution is due to Murray Klamkin of our committee. Several competitors
applied Chebychev’s Inequality directly to S (written in terms of x,y and z)
followed by applications of the Root-Mean-Square-Arithmetic-Mean Inequality
and Arithmetic-Geometric-Mean Inequality.

. Let a and b be non-negative integers such that ab > ¢?, where c is an integer.

Prove that there is a number n and integers x¢, 22, ..., Zn, Y1, Y2, - .-, Yn SUch
that - - -

Z z; = a, Z y; = b, and Z x;Yy; = c.

i=1 =1 =1
Solution

We note that the statement is true for (a, b, ¢) if and only if it is true for (a, b, —¢).
Thus we may assume ¢ > 0. Since the problem is symmetric with respect to a
and b, we may assume a > b. It follows from ab > ¢? that a > ¢, that ¢ = 0 if
b = 0 and that a + b — 2¢ > 2v/ab— 2¢ > 0 by the Arithmetic-Geometric-Mean
Inequality.

We prove the statement by induction on a + b. It is trivially true if a + b = 0.
Assume that it is true when a + b < m. Consider (a,b,c) where a + b = m + 1.

Ifc < b,letn=a+b-c. Thevectorsx = (1, x2,... sz,)andy = (Y1, Y2y -+ » Yn)
may be chosen as follows. Let ; = 1 for 1 < ¢ < a and z; = 0 otherwise. Let
y; = 0fore+ 1 < band y; = 1 otherwise.

Suppose ¢ > b, which implies that a > ¢. Consider (a+b—2¢, b, c—b). We have
(a+b—2¢)b—(c—b)? = ab+bc—c? > 0. Moreover, a+b—2c+b < a+b = m+1.



By the induction hypothesis, a solution (z, y) exists for (a + b — 2¢,b,c — b). It
is easy to verify that (x + y, y) is a solution for (a, b, ¢).

. Let n be aninteger, n > 3. Let ay, as,... ,a, be real numbers, where 2 < a; <
3fori=1,2,...,n. lf s=ay+as+---+ a,, prove that
2 2 2 2 2 2 2 2 2
aj +a; —ag a;taz—a;  a,ta;—a < 25— 9n
a; +az —ag az + a3 — ay a, +a; —az —
Solution
Write
2 2 2
a; +a; , —a; , 2a;0;41
A; == s 2 = a; + a1+ a; 2 — .
a; + aiy; — @iy a; + aip1 — Q2

Since (a,- — 2)(ai+1 — 2) 2 0, —2a,-a,-+1 S —4((1,1 + Ay — 2) and

A;yos — 2
A;<a;+ a1 +ai2—414 .
a; + a; 1 — Q4o

Since1 =2+2—3<a;+ aip1 — g2 <3+3—2=4,
(L,:+2—2
AL a;+ a4 a0 —4 1+T =a;+a;; — 2.

Hence n
Z A; < 25— 2n.

=1

. Let a, b and ¢ be given positive real numbers. Determine all positive real num-
bers x,y and z such that

r+y+z=a+b+c

and
4xyz — (a’x + b*y + c*z) = abe.

Solution
The second equation is equivalent to

a? b? c? abe
4=—+ —+ —+ —.
yz zx Y TYZ

Letz; = a/\/yz,y1 = b//zx and z; = ¢/ /xy. Then4 = 22+ y?+ 224 2 1y1 21,
where 0 < z; < 2,0 < 9y < 2,0 < z; < 2. Regarding the new equation



as a quadratic in z;, the discriminant (4 — x2)(4 — y?) suggests that we let
x1 = 2sinu, 0 < u < 7/2,and y; = 2sinv, 0 < v < 7/2. Now

4 = 4sin®*u + 4sin®v + zf + 4sinu -sinwv - z;.
Hence (z; + 2sinu - sin v)? = 4(1 — sin® u)(1 — sin® v). In other words
|z1 + 2sinu - sin v| = |2 cosu - cos v|.
Since z;,sinu and sin v are all positive, we can discard the absolute values, so
zy = 2(cosu - cosv — sinu - sin v) = 2 cos(u + v).

Thus
2sinu - /yz = a, 2sinv-:-+/zx = b,

2(cosu - cos v — sin u - sin v) /Ty = c.
Fromx+y+2z=a+b+ c,
(Vzcosv — Jycosu)® + (Vzsinv + /ysinu — v/z)> =0

which implies

Vz =+zsinv+ /ysinu = \/5% —|—\/g_/%

Therefore,\/E:\/5-2\}’%+\/g.2¢1ﬁ,50z:aTer,

C

Similarly, y =

a — bte
5 and =z = =,

Clearly the triple (z,y, z) = (%<, <f2, ¢4?) satisfies the given system of equa-

tions. Thus it is the unique solution.

. Let R be the set of real numbers. Does there exist a function f : R — R which
simultaneously satisfies the following three conditions?

(a) There is a positive number M such that — M < f(x) < M for all «.

(b) The value of f(1) is 1.

(c) If  # 0, then

Solution
An f that satisfies the three conditions simultaneously does not exist.

Suppose to the contrary that f : R — R satisfies the conditions. Let ¢ be the
smallest integral multiple of i greater than any f(x). We have ¢ > 2 since

F2) = £+ 55) = FO) + P = 2



Moreover, there exists some x such that f(z) > ¢ — 1. Then

62f<m+%) = (=) + {f(i)rzc—} [f (i)]

This is a contradiction.

. Let n be an integer, n > 3. Let =, x3,... ,x, be real numbers such that z; <
x;ys for 1 < ¢ < n — 1. Prove that

n(n —1) Z:L. x; > (z_:(n — z‘)m,) (zn:(j — l)mj> .

i<j =1

Solution
Let
n(n — 1)
Z Zj, y—Z(J_l)mJa C= —1——
2
j=i+1
z; = cy; — (n — i)y.
Then .
n(n —-1) — ) "
Zm x; — (Z(n — z)m,) (Z(] — 1):1:]->
1< i=1 j=2
n—1 n n—1 n—1
=c Z Z x;x; — Z(n — x;y = Z T;%;.
i=1 j=i+1 i=1 i=1
n—1
It remains to show 3 x;z; > 0. Since
=1

=@t ta )+ @+t T) T =) G-V =y



n—1
and E (n—1) = "(" L — ¢, we have S z; = 0. It follows that some z; are

=1
negative. Note that y = E(] —1z; < E(] — &, = cx,. Thus z,_; =
=2 =2
CYn—_1— Y =cx, —y > 0. Smce

Zit1 . Zi _ Yit1 Y
ec(n—i—1) en—13) n—i—1 n—i
Tt T T+t Ta
- n—t—1 N n—1
> 0,

wehave 2 < 22 < Fao ... < 222 <, . Thus there is an integer k such

that z; <0 for1<i<kandz >0fork+1<i< n. Then (z; — xx)z; >0
for each1 < i < n — 1. Moreover, (x; — xx)z; > 0 for some ¢. Therefore

n—1 n—1
E Tiz; > Ty E z; = 0,

as required.

3.2 GEOMETRY

1. Let A, B, C and D be four distinct points on a line, in that order. The circles
with diameters AC and B D intersect at the points X and Y. The line XY meets
BC at the point Z. Let P be a point on the line XY different from Z. The line
CP intersects the circle with diameter AC at the points C and M, and the line
BP intersects the circle with diameter BD at the points B and IN. Prove that
the lines AM, DN, and XY are concurrent.

Solution

Let the lines XY and DN meet at the point Q. Then triangles BPZ and QDZ
are similar. Hence 22 = Z& or ZQ = 2228 Since Z, D, B and P are fixed
points, so is Q. By symmetry, AM also passes through Q.




e N
e SN




2. Let A, B and C be noncollinear points. Prove that there is a unique point
X in the plane of ABC such that XA? + XB?2 + AB? = XB? + XC?* +
BC? = XC? + XA% + CA2

Solution

Let AA'B’C’ be suchthat A, B and C are the respective midpoints of B’'C’, C' A’
and A’ B’. From the condition on AX AB and AX AC,we have BX?2 -CX? =
AC? — AB2. Since B, C and AC? — AB? are fixed, the locus of the point X is a
line perpendicular to BC. Moreover, it passes through A’ since A’'B* — A'C? =
AC? — AB?. Similarly, X lies on the line through B’ perpendicular to C A, and
also on the line through C’ perpendicular to AB. It follows that there is a unique
position for the point X, namely, the orthocentre of AA’'B'C’.

3. The incircle of ABC touches BC,C A and AB at D, E and F respectively. X is
a point inside ABC such that the incircle of X BC touches BC at D also, and



touches CX and XB at Y and Z, respectively. Prove that EFZY is a cyclic
quadrilateral.

Solution

If EF is parallel to BC, then AB = AC and AD is an axis of symmetry of
EFZY. Hence, the quadrilateral is cyclic. If EF is not parallel to BC, we may
assume that the extensions of BC and EF meet at P. By Menelaus’ Theorem,

AF BP CE
FB PC EA
Since BZ = BD = BF, CY = CD = CE and 4 = 1 = XZ,
XZ BP CY
ZB PC YX

By the converse of Menelaus’ Theorem, Z, Y and P are collinear. It follows that
PE.PF = PD? = PY - PZ. Hence EFZY is a cyclic quadrilateral.

Remark: This problem was discarded by the Jury since it has already appeared
in a Russian problem book.

A

F \\

/// \\\\
/ \
[ \
| < 2
\

Z

\ L y /

\ N

\\ \ N I

N~
_ b
B D C

4. An acute triangle ABC is given. Points A; and A, are taken on the side BC
(with A, between A; and C), B; and B on the side AC (with B, between B,
and A) and C; and C; on the side AB (with C, between C; and B) so that

éAAlAz == éAAzAl



= éBBle - éBBzBl - 400102 - éCCzCl.

The lines AA,, BB, and CC; bound a triangle, and the lines AA,, BB, and
CC-, bound a second triangle. Prove that all six vertices of these two triangles
lie on a single circle.

Solution

Let the two triangles be UVW and XY Z as shown in the diagram. Note that
since ZAB;X = ZACU, AAB;B and AACC are similar. Hence 25 =

482 and ZABB, = Z/ACC,. Similarly, /BAA, = ZBCC,. Now

/A,.VB = /BAA,+ /B,BB;+ ZABB,
= /ZBCC,; + £2C,CCy + LACC, = LACB.

Similarly, ZACB = ZAXB, and LA, ZC = ZABC = ZAUC,. By the Sine
Formula,

AV _ AB _ AB
sin ABV  sinA,VB  sin ACB
_ AC AC
~ sinABC  sin A.ZC
_ AZ
 sin ACZ’

It follows that AV = AZ. Similarly, BW = BX and CU = CY. Also,

AU _ AC, _AC AC
sin ACLU  sin AVC;  AC sin ABC
_ AB, AB _ AB,
~ AB sinACB  sin AXB,
_ AX
 sin AB, X

It follows that AU = AX. Similarly, BV = BY and CW = CZ. In particular,
UX is parallel to BC and W X to C A. Consider the quadrilateral UV W X. We
have

AUX = /AA A, = /BBB, = /BWX.

Hence X lies on the circumcircle of triangle UV W. Similarly, sodo Y and Z. It
follows that U, V, W, X, Y and Z are concyclic.

Remark: This problem was discarded by the Jury since it has already appeared
in a Russian problem book.



5. Let ABCDEF be a convex hexagon with AB = BC = CD, DE = EF = F A,
and /BCD = /ZEFA = 60°. Let G and H be two points in the interior of the
hexagon such that ZAGB = /DHE = 120°. Prove that AG + GB + GH +
DH + HE > CF.

Solution

Note that BCD and EF A are equilateral triangles. It follows that BE is an
axis of symmetry of ABDE. Reflect BCD and EF A about BE to BC'A and
EF'D respectively. Since /BGA = 180° — ZAC'B, G lies on the circumcircle
of ABC'. Hence ZAGC' = ZABC' = 60°. Let K be the point on GC’ such
that K AG is equilateral. Then ZC'AK = 60° — /BAK = /BAG. Since
C'A = BA and AK = AG, triangles C’AK and BAG are congruent. It
follows that GC' = GK + KC' = GA + GB. Similarly, DH + HE = HF"'.
Hence

CF=CF <CG+GH+HF = AG+GB +GH + DH + HE,

with equality if and only if C’, G, H and F' are collinear in that order.



Alternative Solution

The result holds without the condition that F/AGB = /ZDHE = 120°. Let
C'" and F’ be as in the first solution. By Ptolemy’s Inequality, GC' - AB >
GA-BC'+GB-AC'sothat GC' > GA + GB. Similarly, HF' > HD + HE,
It follows that

CF=CF <CG+GH+ HF < AG+GB+GH+ HD + HE.

Remark: This is Problem 5 of the 36th IMO on July 20, 1995. The first so-
lution is due to Bill Sands of our Committee, who observes that the lemma
GC' = GA + GB is a special case of Ptolemy’s Theorem which is featured in a
1973 Putnam Mathematics Competition. The second solution is due to Arthur
Baragar, a coordinator at the IMO. He uses Ptolemy’s Inequality which is a
stronger result than Ptolemy’s Theorem.

. Let A;A;A3A4 be a tetrahedron, G its centroid, and A}, A}, A} and A/ the
points where the circumsphere of A, A; A3 A, intersects GA,, GA;, GA; and



G A, respectively. Prove that
GA,-GA;-GA;-GA, < GA'-GA,-GA,-GA,

and
1 n 1 n 1 n 1 < 1 n 1 n 1 n 1
GA,  GA, GA, GA,~ GA, GA, GA; GA,

Solution

All summations here range from ¢ = 1 to ¢ = 4. Let O be the circumcentre
and R be the circumradius of A; A» A3 A,. By the Power-of-a-point Theorem,
GA; - GA, = R? — OG? for 1 < ¢ < 4. Hence the desired inequalities are
equivalent to

(R* — 0G?*?* >GA,-GA,-GA;-GA, (1)
and
1
R? — OG? — > GA;. 2
Y a2y ®
Now (1) follows immediately from
4R’ - 0G*) =) GA} (3)

by the Arithmetic-Geometric-Mean Inequality. To prove (3), let P denote the
vector from O to the point P. Then

G —A) =) A>-) G*+2G-) (G- A). (4)

This is equivalent to (3) since the last term of (4) vanishes. By Cauchy’s Inequal-
ity, 43, GA? > (X GA)? and 3 GA; Y, - > 16, so that

1
—Z A2Z— > —(ZGA )2ZG—A,- > Y GA;.
Hence (2) also follows from (3).

. O is a point inside a convex quadrilateral ABCD of area S. K, L, M and N are
interior points of the sides AB, BC,CD and DA respectively. If OK BL and
OMDN are parallelograms, prove that v/S > /Sy + +/Sz, where S; and S,
are the areas of ON AK and OLC M respectively.

Solution



If O lies on AC, then ABCD, AKON and OLCM are similar, and AC =
AO + OC. Hence v'S = /81 + +/S5. If O does not lie on AC, we may as-
sume that O and D are on the same side of AC. Denote the points of in-
tersection of a line through O with BA, AD,CD and BC by W X Y and Z
respectively. Initially, let W = X = A. Then 2% = 1 while $Z > 1. Ro-
tate the line about O without passing through B, until Y = Z C. Then
% > 1 while = 1. Hence in some position during the rotation, we have
o% = 27 Fix the line there. Let Ty, T%, Pi, P>, Q, and Q, denote the areas
of KBLO NOMD WKO,OLZ,ONX and Y MO respectively. The desired
result is equlvalent toTy + T2 > 2/85.:S,. Since WBZ,WKO and OLZ are
similar, we have

wo 0Z

VP VP = \/P1+T1+P2(—+—)Z\/P1+T1+P2,

WZ WZ

which is equivalent to T, = 2+/P, P;. Similarly, T, = 2/Q.Q-.
Since 2% = 2% we have & = OOVZV; = oX — %. Denote the common value of
& — Q2 by k. Then

T+ T, = 2v/PP,+2/Q.Q; = 2v/P,P>(1+ k)
= 2y/(A+k)P(1+ k)P = 2,/(PL + Q1)(P: + Q2)

> 24/5:5;.




8. Let ABC be a triangle. A circle passing through B and C intersects the sides
AB and AC again at C' and B’, respectively. Prove that BB',CC’ and HH'
are concurrent, where H and H' are the orthocentres of triangles ABC and
AB'C' respectively.

Solution

Since ZAB'C' = /ABC, AB'C’' and ABC are similar triangles, as are H' B'C’
and HBC. Let BB’ cut CC’ at P. Since

/BB'C = /CC'B, /PBH = /PCH. (1)



Since /PB'C' = /PCB, PB'C’' and PC B are similar triangles. Complete the
parallelogram BPC D. Then DBC is congruent to PC B and hence similar to
PB'C'. 1t follows that BHC D is similar to B'H'C'P, so that BHD is similar
to B'H'P. Hence

/HDB = /H'PB'. (2)

Complete the parallelogram HPCE. Then
/PCH = /CHE. 3)

Note that BHE D is also a parallelogram. Hence
/DHE = /HDB. (4)

Now BPH and DCE are congruent triangles. It follows that

/CDE = /PBH (5)
and
/BPH = /DCE. (6)

By (5), (1) and (3), ZCDE = Z/CHE. Hence HCED is cyclic. It now follows
that

/DCE = /DHE. 7)

By (6), (7), (4) and (2), /BPH = /H'PB’. Hence HH’ also passes through P.

Remark: This problem was discarded by the Jury after Nazar Agakhanov, the
leader of the team from Russia, claimed that it was used in a Russian contest in
1995.
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3.3 NUMBER THEORY & COMBINATORICS

1. Let k be a positive integer. Prove that there are infinitely many perfect squares
of the form n2* — 7, where = is a positive integer.

Solution

We first show that, for each k, there exists a positive integer a, for which a2 =

—7 (mod 2*). We use induction on k.

Observe that a;, = 1 satisfies the condition for £ < 3. If a} = —7 (mod 2*) for
some k > 3, consider the value of aZ modulo 2%*!. Either

-7 (mod 2%t1)

2
a,

or
al=2F_—7 (mod 2%t1).

In the former case, set apy; = ai. In the latter case, set ary; = ap + 2571,
Since k£ > 3 and ay, is odd,

aZ+1 —a; + 2ka, + 2%¢-2 = a’ + 2kq, = a; + 28 = —7  (mod 2*t1),



by the induction hypothesis.

Finally, we note that the sequence {a:} contains no largest element, since we
must have a? > 2% — 7 for each k. Consequently, {a:} contains infinitely many
distinct values. This implies the desired result.

. Let Z denote the set of all integers. Prove that, for any integers A and B, one
can find an integer C for which M; = {&* +! 2+ B : « € Z} and M, =
{22? + 22 + C : € Z} do not intersect.

Solution

If A is odd, M, consists of numbers of the form z(z + A) + B = B (mod 2)
while M, consists of numbers of the form 2z(x + 1) + C = C (mod 2). To
ensure that these two sets do not intersect, we can choose C = B + 1.

If A is even, M, consists of numbers of the form

( +A)2+B A* B A* B A2+1 (mod 4)
x4+ — ——=B—-— or - — mo
2 4 4 4 ’

while M, consists of numbers of the form 2z(x + 1) + C = C (mod 4). Here
we can choose C = B — ATz + 2.

. Determine all integers n > 3 such that there exist n points A, A,,..., A, inthe
plane, and real numbers r, rs, ... , r, satisfying the following two conditions:
(a) no three of the points A, A,,... , A, lie on a line;

(b) for each triple ¢,7,k(1 < ¢ < j < k < n) the triangle A;A; A, has area
equal to r; + r; + 7.

Solution

We claim that n = 4 is the only integer satisfying the conditions of the problem.
Forn = 4, let A; A, A3 A, be a unit square and let r; = r; = r3 = r, = 1/6. It
remains to show that no solution exists for n = 5, which implies that there are
no solutions for any n > 5.

Suppose to the contrary that there is a solution with n = 5. Denote the area of
AA;A;AL by [ijk] =r; + 7+ 74,1 < i < j < k <5.1f A;A;A,A, is convex,
then r; + v, = r; + r,. This follows from [¢jk] + [k£i] = [jk€] + [£2]].

We cannot have r; = r;. If for instance r, = r;, then [124] = [125]. If A, and A,
are on the same side of A, A5, then A; A, must be parallel to A, A;. If they are
on opposite sides, then A; A, must pass through the midpoint M of A, A5. The
same can be said about A, A3 and A3 A,. Since A, A, and A3 are not collinear,
at most one of A; A,, A> As and A3 A, can be parallel to A, A5, and at most one
can pass through M. This is a contradiction.



Consider the convex hull of A, A,, A3, A, and As. We have three cases.

First, suppose that the convex hull is a pentagon A; A, A3 A, Ajs. Since A; A3 Az A,
and A, A;A3A; are convex, our observation yvields »; + r3 = r» + r4 and
ry + r3 = r5 + r5. Hence r4, = r5, a contradiction.

Next, suppose that the convex hull is a quadrilateral A; A, A3 A4. We may assume
that Aj; lies within A3 A4 A,. Then A; A; A3 A5 is convex, and we have the same
contradiction as before.

Finally, suppose that the convex hull is a triangle A; A As. Since
[124] + [234] + [314] = [125] + [235] + [315],

we have r, = r5, a contradiction.

Alternative Solution

We proceed as in the first solution up to »; +r, = r; + . if A;A; A, A, is convex.
Assume that r; > r, > r3 > r, > rs. Then [123] is the greatest area among
the ten triangles determined by these five points. Hence both A, and A; lie
within the triangle B, B; B3 which has A;, A, and A3 as the midpoints of its
sides B, B3, B3B; and B, B,, respectively.

Suppose both A, and A; are inside A; A5 As. Then
[124] + [234] + [314] = [125] + [235] + [315],

which implies that », = r5. Since A4 and A5 are on the same side of A; A, and
of A;A3, AjAs; must be parallel to both segments. This is a contradiction since
A,;, A, and A3 are not collinear.

We may now assume by symmetry that A4 isin B; A; As. Then r; +7r4, = ry+rs.
If A5 is also in B; A, A3, then r; + r5 = r, + r3 so that r4, = r5. This leads
to a contradiction as before. On the other hand, if A5 is in A, A3 B,B3, then
r4 + 75 = 73 + 73 so that », = r5. This also leads to a contradiction.

Remark: This is Problem 3 of the 36th IMO on July 19, 1995. The first solution is
due to Bill Sands of our Committee. The second solution is due to the proposer
of the problem, Karel Horak, leader of the team from the Czech Republic.

. Find all positive integers x and y such that = + y2 + 23 = zyz, where z is the
greatest common divisor of  and y.

Solution

Let x = zc and y = zb, where ¢ and b are relatively prime integers. Then the
given Diophantine equation becomes ¢ + zb? + 22 = z2%cb. Hence ¢ = za for



. 2
some integer a, and we have a + b* 4+ z = 2%2abora = zb2b+_z1. If z = 1, then

a="%% =p+1+ 2. It follows that b = 2 or b = 3, sothat(:c,y):(s 2)

or (z,y) = (5,3). If z = 2, then 16a = 8432 — 4p 4 1 4 33 |t follows
that b = 1 or b = 3, so that (z,y) = (4,2) or (x,y) = (4, 6) In general,

2 . 2b2+3 _ b+3 . . . b+3 2 __ +1
z%a = 232 = b + _;1%;. Being a positive integer, 7t > 1orb < ==

If = > 3, then Z=2z+t —=tl < z 41, so that b < 2. It follows that a < z+z < 2,
so that a = 1. Now b is an integer solution of w? — 22w + z + 1 = 0 This
implies that the discriminant z* — 4z — 4 is a square. However, it lies strictly
between (22 —1)? and (2?)2, a contradiction. Hence the only solutions for (z, )
are (4, 2), (4,6), (5,2) and (5, 3).

. At a meeting of 12k people, each person exchanges greetings with exactly 3k + 6
others. For any two people, the number who exchange greetings with both is
the same. How many people are at the meeting?

Solution

For any two people, let n be the fixed number of others who have exchanged
greetings with both. Consider a particular person a. Let B be the set of people
who have exchanged greetings with a, and C the set of those who have not. Then
there are 3k + 6 people in B and 9k — 7 people in C. For any b in B, people
who have exchanged greeting with a and b must be in B. Hence b has exchanged
greetings with n people in B, and hence with 3k+5—n peoplein C. For any cin
C, people who have exchanged greetings with a and ¢ must also be in B. Hence
¢ has exchanged greetings with n people in B. The total number of greeting
exchanges between B and C is given by (3k4-6)(3k+5—n) = (9k — 7)n, which
simplifies to 9k2 — 12kn + 33k + n + 30 = 0. It follows that n = 3m for some
positive integer m, and 4m = k + 3 4+ 2%+43 1f k > 15, then 12k — 1 > 9k + 43
and 4m will not be an integer. For 1 < k < 14, only £ = 3 yields an integer
value for 25+43, Hence there can only be 36 people at the party. We now give a
construction that such a party can exist.

R OY G B V R = Red

V R OY G B O = Orange
BV ROYG Y = Yellow
G BV ROY G = Green
Y GB V RO B = Blue
OY G B VR V = Violet

Let the 36 people sit in a 6 by 6 array, wearing shirts of the colours as indicated
in the diagram above. Each person knows only those in the same row, in the



same column, or wearing shirts of the same colour. Clearly, each knows exactly
15 others. Let P and Q be any two persons at the party. If they are in the same
row, they both know the four other people in that row, the one in P’s column
and Q’s colour, and the one in P’s colour and Q’s column. The cases where P
and Q are in the same column or colour can be verified in an analogous manner.
Suppose they are not in the same row, column or colour. Then they both know
the six who are respectively in P’s row and Q’s column, P’s row and Q’s colour,
P’s column and Q’s row, P’s column and Q’s colour, P’s colour and Q’s row, and
P’s colour and Q’s column.

. Let p be an odd prime. Find the number of subsets A of {1,2,...,2p} such
that

(a) A has exactly p elements, and
(b) the sum of all the elements in A is divisible by p.

Solution
For any p-element subset A of {1,2,...,2p}, denote by s(A) the sum of the

elements of A. Of the 2;) such subsets, B = {1,2,...,p} and C = {p +
1,p + 2,...,2p} satisfy s(B) = s(C) = 0 (mod p). For A # B,C, we have
AN B # 0 # AN C. Partition the 2;) — 2 p-element subsets other than B

and C into groups of size p as follows. Two subsets A and A’ are in the same
group if and only if A’ C = A C and A’ () B is a cyclic permutation of A\ B
within B. Suppose A\ B has n elements, 0 < n < p. For some m such that
0<m<p,

A’ B=
{a:-l—m:areAﬂB,w-l—mSp}U{az-l—m—p:wEAﬂB,a:Sp<az-|—m}.

Hence s(A’) — s(A) = mn (mod p), but mn is not divisible by p. It follows
that exactly one subset A in each group satisfies s(A) = 0 (mod p), and the
total number of such subsets is

(7))

Alternative Solution
Let w be a primitive p-th root of unity. Then

2p
H(:c —w') = (2P —1)? = 2 — 227 + 1.
i=1



Comparing the coefficients of the term =?, we have

p—1
9 — Zwi1+i2+...+ip — Z njwl,
i=0

where the first summation ranges over all subsets {%4, ¢2,... ,¢,} 0of {1,2,... ,2p}
and n; in the second summation is the number of such subsets such that ¢, 4 i, +
++++i, = j (mod p). It follows that w is a root of G(x) = (no—2)+> 7| njw,
which is a polynomial of degree p — 1. Since the minimal polynomial for w over
the field of rational numbers is F(x) = E;’;& wJ, which is also of degree p — 1,
G(x) must be a scalar multiple of F(z),sothatng—2 =n; =ny =+ =n,_4.

Since E;’:Onj = ( 2][1)0),wehawefn,(]:p—1 (( 2;))—2) + 2.

Remark: This is Problem 6 of the 36th IMO on July 20. The first solution is
due to the proposer, Marcin Kuczma, the leader of the team from Poland. The
second solution is due to Roberto Dvornicich, the leader of the team from Italy.
Nikolay Nikolov, a Bulgarian student, won a special prize for his solution which
is essentially along the line of the second one. Nikolay had won two Gold Medals
and one Silver Medal at the last three IMO'’s, and topped off his outstanding
career as a competitor by obtaining a perfect score this time.

. Does there exist an integer n > 1 which satisfies the following condition?

The set of positive integers can be partitioned into n non-empty subsets, such
that an arbitrary sum of n — 1 integers, one taken from each of any n — 1 of the
subsets, lies in the remaining subset.

Solution

Such a number does not exist. Certainly, we cannot have n = 2. Supposen > 3.
Let a and b be distinct numbers in A;. Let ¢ be any number in A; which may be
the same as a or b. Suppose a+ ¢ and b+ ¢ belong to different subsets. If one of
them, say a+c, also belongs to A; while the other belongs to some other subset,
say As, choose a; in A; fori = 3,4,...,n. Thenb+as+as+---+a,isin A,, so
that (a+c¢)+(b+as+as+:--+a,)+as+---+a,isin Az. On the other hand,
a+ag+ays+---+a,isin A, sothat (a+as+as+---+a,)+(b+ec)+as+---+a,
isin A;. We have a contradiction. The only other case is where neither a + ¢ nor
b+cbelongsto Ay, saya+cin A; and b+cin As. Thenb+(a+c)+as+---+a,
isin Az whilea+(b+¢)+a4s+---+a, isin A,. Again, we have a contradiction.
It follows that a 4+ ¢ and b + ¢ must belong to the same subset.

Fori =1,2,...,n, choose ; in A; and lety; = s—x;, wheres = =, + x5 +---+
x,. Then y; is also in A;. We may assume that sisin A,. If 2; = y;, then 2z; = s
is in A;. Suppose z; # y;. By what has been proved earlier, 2x; = x; 4+ «; is in
the same subset as x; + y; = s, whichis in A;. It follows that A, contains all the



even numbers. If n is even, then 2+ 23+ x4+ - -+ 2, is an even number in A,,
which is a contradiction. Suppose n is odd. Thenz; +x3+x4+---+x, isin A,
and hence odd. It follows that #; must be even, so that A, consists of precisely
the even numbers. By varying x,, we can show that all odd integers from a
certain point on must belong to A, as well as to Az, which is a contradiction.
Hence the condition of the problem cannot be satisfied for any =.

. Let p be an odd prime. Determine positive integers  and y for which z < y
and /2p — /= — /y is non-negative and as small as possible.

Solution

Let p = 2n+1 for some positive integer . We first prove that D = /2p—+/z —
/Y is non-zero for any positive integers « and y. Otherwise, 2p = z+y+2,/Ty.
Let b* be the largest square which divides =, and ¢? be the largest which divides
y. Then b+ ¢ > 2. If = ab?, then y = ac®. Hence 2p = a(b + ¢)?, but this is
a contradiction since 2p is not divisible by any square greater than 1. Now

p_2—r+ vy (2p — x — y)* — dzy

V2p+ v+ vy (VZp+ v+ Y)(2p — = —y + 2,/TY)
The numerator is a positive integer. If it is greater than 1, then
2

> (VAn+ 2+ Vo 4+ y)(dn + 2 — (VT — /y)?)

D

so that
1 1

2

2v/4n + 2(4n +2)  (4n + 2)3/2 ” Tons/2

since 4n+2 < 6n < 16%/3n. If the numerator is equal to 1, then (2p—x —y)? =
4xy + 1. Hence 2p — z — y = 2m + 1 for some positive integer m. Let d be the
greatest common divisor of m and x and let m = dh and 2 = dk for relatively
prime positive integers h and k. Let g be the greatest common divisor of m + 1
and y. Thenm +1 = gk and y = gh. Hence 2p =z +y+ m+ m+1 =
(d 4+ g)(h + k). Since p is prime, we must have eitherd =g =1o0orh =k = 1.
In the former case, x = £ = m + 1 while y = h = m, which contradicts = < y.
Inthe lattercase,z =d =mandy =g =m+1.Wehave2p =z +y+2m+1
so that p = 2m + 1. It follows that m = n. Now

1

(VAn + 2+ /n+ vn +1) (2n—|—1—|—2\/n(n—|—1))

D >

D =

so that
1 1

b< (Van + v/n + /n)(2n + 2¢/n-n) ~ 16n3/2

Thus the minimum positive value of D is attained only for (z, y) = (2%, 2£),




3.4 SEQUENCES

1. Does there exist a sequence F(1), F(2), F(3), ... of non-negative integers
which simultaneously satisfies the following three conditions?

(a) Each of the integers 0,1, 2,... occurs in the sequence.
(b) Each positive integer occurs in the sequence infinitely often.
(c) Forany n > 2,

F(F(n'®)) = F(F(n)) + F(F(361)).

Solution
Let F(1) = 0 and F(361) = 1, so that condition (c) becomes:

F(F(n'%®)) = F(F(n)) for n > 2.
For2 < n < 360, let F(n) = n. Inductively define F(n) for n > 362 as follows:

e If n = m'%3 for some m, let F(n) = F(m).

e Otherwise, let F(n) be the smallest number notin {F(k) : k < n}.
Each non-negative integer appears because there are infinitely many numbers
not of the form m'%?, and each positive integer appears infinitely often since if it

appears as F(n) then it also appears as F(n'%3),
F((n'%3)163), and by an easy induction, as F(n'%3) for k > 1.

Condition (c) is satisfied since F(n) = F(n'%?), so

F(F(n)) = F(F(n'®)).

2. Find the maximum value of x4 for which there exists a sequence of positive real
numbers xq, 21,... , T1995 Satisfying the two conditions:

(3) Lo = L1995;

(b) @;—1 + ;72— = 2x; + - foreachi = 1,...,1995.
Solution
The given condition is equivalent to «? — (‘””2‘1 + m.l_l) x; + % = 0, which yields

1

.
Ti—1

either ; = Ja;_, ora; =

We call the transition from z;_; to x; a move. Starting from x,, all possible
moves are represented by arrows in Figure 1. The halving moves are represented
by solid lines, while the reciprocating moves are represented by broken lines.
We have to return to x, after exactly 1995 moves.



Note that each row consists of distinct numbers as long as x4 # 0, and the two
rows of numbers are either disjoint or identical. If they are disjoint, then it is
not possible to return to x, after an odd number of moves, since each move is
between a number enclosed by a circle and one by a square.

It follows that the two rows of numbers are identical. Even in this case, the task
is only possible if the numbers in the first row enclosed by circles are identical
to those in the second enclosed by squares. Moreover, the numbers in the two
rows are descending in opposite direction. It follows that one of the numbers
must be equal to 1, so that we can replace Figure 1 by Figure 2.

In order to maximize x,, there is no point in taking a reciprocal except on the
very last move. Of the remaining 1994 moves, exactly half will be made on each
side of 1. Hence the maximum value of z, is 2997.
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Alternative Solution
As in the first solution, either z; = ‘””2‘1 or x¢; = m,I - For ¢ > 0, we claim that

x; = 2kiz for some integer k; with |k;| < ¢ and ¢; = (—1)*i*%. This is true for
¢ = 0, with ki, = 0 and ¢; = 1, and we proceed by induction. Ifitis true forz—1
and ¢; = jx;_1, then we have k; = k;_; — 1 and ¢; = €15 while if 2; = -,
then we have k; = —k;_; and ¢, = —e¢;_;. In each case, it is immediate that
|kz| S ¢ and €; = (—1)ki+i. Thus L1995 = 2k£L‘(€], where k = k1995 and € = €1995,
with 0 < |k| < 1995 and € = (—1)"95+%, It follows that ¢ = #1995 = 2*z¢. If k
is odd, then € = 1 and we have 2% = 1, a contradiction since & # 0. Thus k& must
be even, so that e = —1 and 2 = 2*. Since k is even and |k| < 1995, k < 1994.



Hence 2o < 2%7. We can have ¢ = 2%, 2; = 1#;_; fori =1,2,...,1994, and
L1995 — L . Then

1994

1

x ===z
1995 919944, 0

as desired.

Remark: This is Problem 4 of the 36th IMO on July 20, 1995. The first solution is
due to Johannes Notenboom, the leader of the team from the Netherlands. It is
along the line of that of the proposer of the problem, Marcin Kuczma, the leader
of the team from Poland, differing only in presentation. The second solution is
due to Sam Maltby of our Committee.

. For an integer # > 1, let p(x) be the least prime that does not divide =, and
define g(«) to be the product of all primes less than p(z). In particular, p(1) =
2. For z having p(x) = 2, define g(x) = 1. Consider the sequence z¢, z,, z2, ...
defined by ¢ = 1 and

Z,p(x5,)
Lpntl = ———

q(zn)
for n > 0. Find all n such that =,, = 1995.

Solution

It is clear from the definitions of p(x) and q(«) that g(x) divides « for all z, so
that

mn
q(zy,)
is a positive integer for all n. Also, an easy induction shows that «,, is square-free
for all n. Hence we can give each a unique code according to which primes divide
it. Let po = 2,p; = 3,p2 = 5,... be the sequence of all primes in increasing
order. Let x > 1 be any square-free number and let p,, be the largest prime
dividing it. Then the code of = is (1, 8;—1, S—2,.-- 81, S0), Where s; = 1 if
p; divides # and s; = 0 otherwise, 0 < ¢ < m — 1. Define f(z) = %ﬁ:’)). If
the code of = ends in 0, then « is odd, p(z) = 2,q(z) = 1 and f(x) = 2x. The
code of f(x) is the same as that of  except that the terminal 0 is replaced by
1. If the code of # ends in 011...1, then the code of f(x) ends in 100...0. If
we treat the codes as though they are binary numbers, then the code of f(x)
can be obtained from that of by adding 1. From &y = 2 and z,,+1 = f(z,)
for n > 2, the code of x,, is simply the binary representation of the number =.
Hence there is a unique n for which x,, = 1995 = 3-.5.7-19. Since the code of
x, is 10001110 we have n = 142 in decimal representation.

Lnt1 = p(xn)



4. Suppose that z,, 5, ¢3,... are positive real numbers for which
n—1
n _ J
oi= e
i=0

forn =1,2,3,.... Prove that for all n,

Solution

Forn=1,wehaveax; =] =2 =1,and clearly2 —2° =1 < 2 — 271
Suppose now that n > 2, and let

n—1
flx) = 2™ — Z xl.
j=0

By Descartes’ Rule of Signs, f(x) has a unique positive =,,. Forall n > 2,

> (1 _ 2—(1’1.—1))1’1.—1.

Thus (1 —2"")" > (1—2"YHYt =1/2.
Consider g(x) = (x — 1) f(x) = (x — 2)x™ + 1. We have

g2—2"")=-—2""2—-2"")"4+1=—(1—-2""t)" L1 >0
and
g(2 —2"m ")y = _9-(m=bg_o-(r-yn L 3 — _9(1 —27")" 4+ 1< 0.
It follows that

f(2—-2""") <0< f(2—-27").

Hence the unique positive root z,, of f(x) satisfies2 — 2" < 2, < 2 — 27",
as required.

5. For positive integers n, the numbers f(n) are defined inductively as follows:
f(1) = 1, and for every positive integer n, f(n + 1) is the greatest integer m
such that there is an arithmetic progression of positive integersa; < a; < +-- <
a,, = n and

flay) = flaz) = -+ = f(am).

Prove that there are positive integers a and b such that f(an 4+ b) = n + 2 for
every positive integer n.



Solution

By computing the first few values of f(n), we observe the following patterns
along with early exceptions:

f(4k) = k, but f(8) = 3; (1)
f(ak+1) =1, but f(5) = f(13) = 2; (2)
f(4k +2) =k —3, but f(1) =1, f(6) = f(10) = 2,
f(14) = f(18) =3, f(26) = 4 (3)
f(4k +3) = 2. (4)

We shall prove these statements simultaneously by induction on k.

For n = 4k, it is easy to verify that f(4) = 1 and f(8) = 3. Let £ > 3. Since
f(3) = f(7)=--- = f(4k — 1) = 2, we have f(4k) > k. On the other hand,
we have f(n) < max{f(m):m < n} 4+ 1. Hence f(4k) = k.

For n = 4k + 2, we have f(2) = 1, f(6) = f(10) = f(22) = 2,f(14) =
f(18) = 3 and f(26) = 4. Let k > 7. Since f(17) = f(21) =--- = f(4k+1) =
1, we have f(4k+2) > k—3. Onthe other hand, if f(4k+1) = f(4k+1—-d) =1
and d > 4,thend > 8. Hence 4k+1—d(k—3) < 4k+1—8(k—3) = 25—4k < 0.
It follows that f(4k 4+ 2) = k — 3.

For n = 4k + 1, it is easy to verify that f(1) = f(9) = 1 and f(5) = f(13) = 2.
Let & > 3. Since f(4k) = k and f(m) < kfor all m < 4k, f(4k +1) = 1.

For n = 4k + 3, it is easy to verify that f(3) = f(7) = --- = f(31) = 2.
Let & > 8. Since f(4k + 2) = k — 3 and f(m) = k — 3 for exactly one m <
4k + 2, f(4k +3) = 2.

It remains to observe that we can take a = 4 and b = 8 since f(4n+8) = n+2
for every positive integer n.

. Let N denote the set of all positive integers. Show that there exists a unique
function f : N — N satisfying
f(m+ f(n)) =n+ f(m+ 95)
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for all m and n in N. What is the value of > f(k)?

k=1

Solution

Let F(n) = f(n) — 95 for all n > 1. Writing k for m + 95, the given condition
becomes

F(k + F(n)) = n + F(k) (1)

forallm» > 1 and & > 96. Writing m for k in (1) and then adding & to both sides,
we have F(k+n 4+ F(m)) = F(k+ F(m 4+ F(n))). It follows from (1) that

F(k +n) = F(k) + F(n) (2)



forallm > 1 and & > 96. We claim that
F(96q) = qF(96) (3)

for all ¢ > 1. The case ¢ = 1 is trivial, and the inductive step follows immedi-
ately from (2). Let m be chosen arbitrarily and let F(m) = 96q+», 0 < r < 95.
For any n > 1, (1), (2) and (3) yield

m+ F(n) = F(n+ F(m)) = F(n+ 96q + r) (4)
= F(n+r)+ F(96q) = F(n+r)+ qF(96).
f1<n<96—r,thenl+r<n+r<96.1f97 —r < n <96 wherer > 1,
then1 < n 4 r—96 < r. By (2) and (4),
m+ F(n) = F(n+r— 964 96) 4+ qF(96) (5)
= F(n+r—96) + (q + 1)F(96).
We now sum (4) fromn = 1 ton = 96 — r, and if » > 1, then we also sum (5)

from n = 97 — r to n = 96. After cancelling F(1) + F(2) + --- + F(96) from
both sides, we have

96m = F(96){q(96 — r) + (¢ + 1)r} = F(96)F(m). (6)
Setting m = 96 in (6), we have 962 = [F(96)]”. Since F(96) > 0, F(96) = 96.

It now follows from (6) that F(m) = m or f(m) = m + 95 for all m > 1. The
desired sumisequaltol1 +2+---4+19 4+ 19 -95 = 1995.



